
design dev
issue  # 01Emailzine

2

Designed by Anna Yeaman

Contact : anna@ stylecampaign.com

Demos : http: / / stylecampaign.com / SVG / SMIL /

Resources : https: / / bit.ly / 2JhLwcO

mailto:anna%40stylecampaign.com?subject=Emailzine%20%2301
http://stylecampaign.com/SVG/SMIL/
https://bit.ly/2JhLwcO

3

After writing about email design on
the stylecampaign blog for eleven
years, I wanted to create something
you could take offline. Attending
lazinefest.com inspired me to try and
put together an email zine.  It’s nice to
make something by hand, and I like
how easy-going the format is. As with
any zine, I wrote about stuff I’m into
or currently learning about. There’s
not a theme but I realized as I was
writing it, that much of the content
overlaps a bit. Variable fonts touch
on accessibility, dark mode and film-
strips; and are essentially the same as
SVG shape morphing in that a bunch
of outlines are being shifted around.
SVG filmstrips and flipbooks are just

a bit of fun, some R&D I’d thought to
share. Smart Invert brings us back to
accessibility, and a loose tie-in with
SVG in that we might see more of
it in email as a result of dark mode.
There’s also a bunch of online demos
and resources if you want to have a
play ( see left ), though I tried to write it
in a way that makes them optional.
I hope you enjoy it – Anna

https://stylecampaign.com/blog/
https://lazinefest.com/
http://stylecampaign.com/SVG/SMIL/
https://bit.ly/2JhLwcO

Contents

6 – 13

14 – 35

36 – 51

52 – 61

Contents

Accessibility feature Smart Invert
as a pseudo iOS dark mode

Variable fonts generate multiple
styles from a single font file

Animated images as SVG / SMIL
filmstrips and flipbooks

Revisiting support for SVG  
shape morphing

6Smart invert

Accessibility feature Smart Invert
as a pseudo iOS dark mode

7 Smart invert

I came across the article, ‘Dark mode
as iOS accessibility feature’ written
back in 2014 on cgpgrey.com. Grey
talks about how he has floaters in his
vision, little dots that get in the way of
his field of view. Black text on white
aggravates it, whereas dark mode
would make reading more comfort-
able. He goes on to mention a pseudo
dark mode that people have been
using for years called Invert Colors.

Invert Colors is an accessibility fea-
ture that reverses all the colors on the
screen, including HTML email crea
tive. On iOS 12 it’s found under Set-
tings / General /Accessibility / Display
accommodations /Invert Colors. It can
aid people with poor vision, sensitiv-
ity to light or color blindness. In com-
bination with other settings like Color
Filters, it can address a number of
visual impairments.

When Invert Colors is activated
black text on white becomes white on
black. Chris Coyier jokingly referred
to it as “halloween mode” years ago
on Twitter, as blue on white interface
elements become orange on black. It’s
a bit heavy-handed for some people
as everything is inverted including
images. Even so it’s been in use for
over five years as a general purpose
dark mode. Part of the appeal is that
you can map accessibility shortcuts
to the home or side button, making
it easy to switch modes for more sit-
uational use. Apple were aware that
Invert Colors was being used as

a dark mode stand in, so with the
release of iOS 11 they fine tuned it by
adding a Smart Invert option. The
original Invert Colors was renamed
Classic Invert. The difference between
the two is that Smart Invert doesn’t
alter images, media and some apps
that already use dark color styles. This
made it a lot more practical for casual
users. I imagine a number of people
have been viewing emails under these
settings, as it was the closest iOS had
to a real dark mode. It’s more likely
when you consider mobile opens tend
to spike late at night and early morn-
ing, while people read email in bed.

With the release of iOS 13 and
an official dark mode Smart Invert
will become obsolete for many, but
it might still function as a back up.
During WWDC 2019, Apple posted
the video ‘Supporting dark mode in
your web content’ which also has a
section on email messages. In the
video they show how plain text emails
will automatically be adjusted but
HTML emails will not auto-darken
(just like macOS Mojave). They
explain that developers are in control
of how their content appears, and as
such have to adopt color-scheme and
prefers-color-scheme in order to cus-
tomize their emails for dark mode. So
Smart Invert might still be in limited
play, as it’s a known and reliable way
to view HTML emails in ‘dark mode’.
At least until we get up to speed and
more emails contain dark styles.

http://www.cgpgrey.com/blog/dark-mode-as-accessibility-feature
https://developer.apple.com/videos/play/wwdc2019/511/
https://developer.apple.com/videos/play/wwdc2019/511/
https://www.kevinmandeville.com/blog/how-macos-mojave-dark-mode-for-apple-mail-impacts-email-design
https://webkit.org/blog/8840/dark-mode-support-in-webkit/
https://webkit.org/blog/8840/dark-mode-support-in-webkit/

8Smart invert

r45  g49  b55r237  g236  b234

r223  g166  b60r26  g68  b54

r21  g20  b155r191  g37  b25

This page shows the default colors, and ( p 9 )
under Smart Invert. Shifts such as red – blue,
can lead to mixed up color cues.

9 Smart invert

r45  g49  b55r237  g236  b234

r223  g166  b60r26  g68  b54

r21  g20  b155r191  g37  b25

Colors under Smart Invert; some of the text in
our test — stylecampaign.com / SVG / invert /  — be-
came unreadable as the tone had also shifted.

http://www.stylecampaign.com/SVG/invert/

10Smart invert

r45  g49  b55r237  g236  b234

r223  g166  b60r26  g68  b54

r21  g20  b155r191  g37  b25

People combine Smart Invert & the grayscale filter
as it’s “soothing” and a “battery saver mode”. Mono-
chromatic vision is rare — 1 in 33,000 — but more
could be viewing email in grayscale than we realized.

https://twitter.com/thisisneil/status/927287141327138816?lang=en
http://www.colourblindawareness.org/colour-blindness/types-of-colour-blindness/

11 Smart invert

r45  g49  b55r237  g236  b234

r223  g166  b60r26  g68  b54

r21  g20  b155r191  g37  b25

How the colors from ( p8 ) look under PS’ pro-
tanopia red / green color blindness simulator:
View / Proof setup / Color blindness / Protanopia

12Smart invert

“ Try the smart invert feature – imagine dark mode email.
really neat.” @ rstevens October 2017

https://twitter.com/rstevens/status/922232970756481025

13 Smart invert

I looked at Mail on iOS 12 using
Smart Invert, to see how HTML
emails appear to someone who isn’t
colorblind. The majority of emails are
light themed to begin with so they
convert well. Though you’ll still want
to run your creative through some-
thing like contrast-ratio.com. HTML
emails that use live text and back-
ground colors etc. provide a better
experience than image-based emails,
as images are left untouched and are
often bright white. Emojis are still
inverted under Smart Invert, and
the unfamiliar colors can make them
harder to decipher in subject lines.

When inverted, black image-based
headings and logos are overlaid on
a black background. If you’re using
transparent PNGs they’ll disappear.
In my 2018 small text study, 27.7%
used image-based headings along-
side live text. This is from 50 emails so
it’s not statistically sound, but it’s still
a fairly common practice. Looking
ahead to ‘prefers-color-scheme’, we
might see more use of SVG in email
design for icons and illustrations. As
you can adjust the colors of an inline
SVG with CSS, so you only need the
one set of assets. Another common
occurrence using Smart Invert is if
you’ve cropped an image assuming a
white background it can look messy
against black. Rémi Parmentier men-
tioned similar issues in ‘Dealing with
Outlook.com’s dark mode’, the same
group of problems show up here.

It can get a bit confusing using iOS
invert modes if you’re not colorblind.
As Grey mentioned, “Invert colors
makes the less important parts of the
screen pop and subdues the parts
that are supposed to draw your atten-
tion”. Mixed up color cues, and unfa-
miliar brand colors can be disorientat-
ing. Though it’s a useful exercise for
designers, as it can uncover any con-
fusing aspects of a design.

Because not everyone views color
in the way the designer intended,
WCAG 2.1 states that color shouldn’t
be the only visual means of convey-
ing information. A new iOS 13 feature
called ‘Differentiate without color’
addresses this. It allows designers to
replace interface items that rely only
on color with an alternative. For cases
where it’s difficult to have those col-
orblind adjustments shown by default.
Color vision deficiencies affect 8% of
men worldwide, and 0.5% of women
according to colourblindawareness.
org, with red-green blindness being
the most common. You can simu-

late what this looks like in PS, under
View / Proof setup / Color blindness
and pick protanopia or deuterano-
pia. I went into this to see what email
looks like under ‘dark mode’, but it’s
left me wanting to learn more about
color accessibility. Besides all the
color and contrast tools which you’re
probably familiar with, Geri Coady’s
book, Color Accessibility Workflows
looks like a good introduction.

https://contrast-ratio.com
http://stylecampaign.com/blog/2018/08/small-text-and-accessibility-in-email/
https://emails.hteumeuleu.com/dealing-with-outlook-coms-dark-mode-dd56a1c0fdbc
https://emails.hteumeuleu.com/dealing-with-outlook-coms-dark-mode-dd56a1c0fdbc
http://www.cgpgrey.com/blog/dark-mode-as-accessibility-feature
https://www.w3.org/WAI/WCAG21/Understanding/use-of-color.html
https://developer.apple.com/videos/play/wwdc2019/244/
http://www.colourblindawareness.org/colour-blindness/types-of-colour-blindness/
http://www.colourblindawareness.org/colour-blindness/types-of-colour-blindness/
https://abookapart.com/products/color-accessibility-workflows

14Variable fonts

Glyph outlines like the letter ‘ I ’ can
shapeshift into different weights

Variable fonts generate multiple
styles from a single font file, this
is possible as character outlines
can change their form

15 Variable fonts

Currently when you purchase a webfont you choose from a
range of individual styles such as condensed or bold, and each
of these is a separate file. The advantage of OpenType variable
fonts is that they can generate multiple styles from a single
font file. This is possible as character outlines can morph
between extremes, such as a thin to black weight. If you squint
and imagine the image to your left is a letter ‘I’, its outline can
shapeshift across a range of weights; all drawn from the same
glyph and with the same number of points.

The full range of weight options falls along a design-vari-
ation axis, from which the type designer is able to select
different locations and assign names e.g. thin, regular or bold.
These pre-defined options are called named instances. If you
require a weight that falls inbetween a named instance you can
define it yourself, allowing for more control and choice. As
type designer DJR explains,“Variable fonts break down that
wall between type designer and type user, because now you
have access to stuff that previously only I had access to.”

Weight is just one of five registered design axes introduced
with the OpenType 1.8 font specification. There’s also width,
slant, optical size and italics. Type designers can also add their
own custom axes. For instance WHOA by Scribble Tone has
an appropriately named ‘ Radness ’ axis, and Jabin by Frida
Medrano has a ‘ Swash ’ axis. Design axis can be combined to
create a multi-axis font, offering a vast array of potential com-
binations all rendered from the same font file. This increase in
choice comes at a smaller file-size — assuming you need more
than a couple of styles to begin with — and fewer requests.

OpenType font variations were introduced at the ATypI
conference in 2016 in a collaboration between Adobe, Google,
Apple and Microsoft. In a recording of the OpenType ses-
sion Simon Daniels shared,“The fact that we have four major
companies here, should be a statement that we are expecting
this to be supported in all major platforms, OS platforms and
major content creation platforms.”

16Variable fonts

Variable font WHOA designed by Scribble Tone, originally had the one
Radness axis slider. Version 0.3 now has four axes giving you separate
control of the horizontal offset, vertical offset, rotation and zoom.

https://v-fonts.com/fonts/whoa
https://www.futurefonts.xyz/scribble-tone/whoa

17 Variable fonts

Variable font FF Meta designed by Erik Spiekermann, has a weight axis
for both the roman and italic  ( above ) versions. Jason Pamental built out
a demo site at codepen.io / jpamental / pen /MGEPEL

https://codepen.io/jpamental/pen/552d210d5bfb4a6edb2c686a6c9bec85
https://www.axis-praxis.org/specimens/ff-meta

18Variable fonts

Frida Medrano’s variable font Jabin
( above & right ) has two axes: weight
and swash. Weight goes from light to
bold, whereas swash is a custom axis
that controls the ‘swashiness’ of the

uppercase letters. Left shows a light
weight with no swash, while right is
a bold weight with a heavy swash.
Everything between those extremes is
available: v-fonts.com / fonts / jabin

https://v-fonts.com/fonts/jabin
http://www.fridamedrano.com/jabin.html

19 Variable fonts

http://www.fridamedrano.com/jabin.html

20Variable fonts

Google Fonts have a few variable fonts on their early access
page, and appear to be considering how best to implement
them. This Twitter poll is from @ googlefonts, January 2019:

If you know what Variable Fonts are, what benefits are the
most important to you?
18% Custom expressive fonts
36% Finer text typography
27% Same fonts, faster
19% Animated text effects

Performance gains received the second highest number
of votes. Variable fonts are smaller in size compared to a
font family of individual styles, as they interpolate or morph
between outlines. The type designer draws the letter ‘ G ’ for
example at its lightest and heaviest — the two extremes on a
weight variation axis — and the in-betweens are dynamically
generated. So only the data from those two or three key out-
lines make up the file size, even though we have access to a
full-range of weights. This is just like SVG shape morphing on
p 52. You only need the SVG data that describes say a circle
and a target shape like a square, and it tweens between the two.

Although variable fonts are more performant, they can still
contain bloat. In the write up ‘How to use variable fonts in
the real world’ Clearleft created a subset of the variable font
Source Sans ( essentially ditching parts of the font they didn’t
need ), and converted from TTF to WOFF2 which took them
from 491Kb down to 29Kb. In an effort to make these types
of optimizations readily available, Jason Pamental a member
of the W3C Web Fonts Working Group, shared that they’re
exploring something along the lines of font streaming, or ‘pro-
gressive font enrichment’. This involves only serving up parts
of the font as and when needed; across multiple page views or
sites. Google Fonts have built out a proof of concept at: fonts.
gstatic.com/experimental/incxfer_demo.

https://twitter.com/googlefonts/status/1083783275284492288
https://medium.com/clear-left-thinking/how-to-use-variable-fonts-in-the-real-world-e6d73065a604
https://medium.com/clear-left-thinking/how-to-use-variable-fonts-in-the-real-world-e6d73065a604
https://clearleft.com/
https://fonts.gstatic.com/experimental/incxfer_demo
https://fonts.gstatic.com/experimental/incxfer_demo

21 Variable fonts

‘Finer text typography’ or responsive typography was listed
as the top benefit in the poll. More control over the typesetting
for improved readability and accessibility is a strong feature.
In Isabel Lea’s variable font experiment, the word ‘ Loud ! ’
gets bolder as she claps. Bram Stein showed how a variable
font can aid justification. While Jason Pamental demonstrated
how increasing the grade axis — Grade changes the weight of
a typeface without altering glyph widths, so the text doesn’t
reflow — can improve the readability of reversed type in dark
mode. Other demos show variable fonts responding to device
width, human gestures, ambient light and distance.

Keeping with the more experimental side of variable
fonts, there are many interesting new typeface designs such
as those found on futurefonts.com, and through David Jona-
than Ross’ fontofthemonth.club. Kinetic type, colored variable
fonts, Laurence Penney’s horse animation that’s a variable font,
Toshi Omagari’s variable font converted from an animated Gif.
People are still exploring what this new format can do.

There is a slight risk that the ability to adjust everything
might add complexity to a type system; and maintaining
that along with a bunch of unfamiliar custom axes could be
challenging for some clients. Type is often the first thing to
breakdown in a modular email system, so it could require
some extra guidance. Adidas built out a custom Illustrator
panel to aid designers working with their variable font Adineue
PRO. It even has a fit to width button that Jeremy Mickel, the
font designer said, “Turns just some text into something that
feels like a sign”. The tooling around variable fonts is still
being figured out, and existing typefaces reworked. So there’s
time to get familiar before we start using them in production.

If you want to try out some variable fonts yourself, there
are a number available on v-fonts.com and axis-praxis.org.
Illustrator and Photoshop CC already support variable fonts,
with InDesign support coming soon. In PS look for a VAR to
the right in your font menu, then check the properties panel.

https://www.futurefonts.xyz/fonts?sort=random&page=1&limit=24&features=variable
https://fontofthemonth.club/
https://mckltype.com/custom-typeface/adineue-pro/
https://mckltype.com/custom-typeface/adineue-pro/
https://v-fonts.com
https://www.axis-praxis.org

22Variable fonts

Variable font Graduate by Eduardo
Tunni ( above & right ) has 12 axes.
Left shows the Grade axis set to a
range of 0 – 20 , useful for reversed
type when switching to dark mode.

Right features the X Opaque axis set
to a range of 40 – 140, this varies the
horizontal ( x-direction ) thickness of
the strokes. You can play with all 12
axes at: v-fonts.com / fonts / graduate

https://v-fonts.com/fonts/graduate
https://v-fonts.com/fonts/graduate

23 Variable fonts

https://v-fonts.com/fonts/graduate

24Variable fonts

Variable font UT Morph, by Wete and Oscar Cobo.
Inspired by Wim Crouwel, with a Positive and a Negative
axis. Letter ‘D’ (left) Iso and (right) Hyper weight.

https://studiowete.com/ut-morph
https://studiowete.com/ut-morph

25 Variable fonts

https://studiowete.com/ut-morph

26Variable fonts

Instead of an axis that adjusts e.g. the weight of a variable
font, Laurence Penney is using the axis as a filmstrip to
create animations: axis-praxis.org  /playground / horse

https://www.axis-praxis.org/playground/horse/
https://www.axis-praxis.org/playground/horse/

27 Variable fonts

/* Code by Laurence Penney,   you end up with a

 horse animation that runs in Mail */

<!DOCTYPE html>

<html>

<head>

<meta charset=”UTF-8”>

<style>

@font-face {

 font-family: Muybridge;

 src: url(MuybridgeGX.woff2);

}

@keyframes Gallop {

 from {

	 font-variation-settings: “TIME” 0;

 }

 to {

	 font-variation-settings: “TIME” 1000;

 }

}

body {

 font: 320px Muybridge;

 animation: Gallop 0.5s linear 0s infinite;

}

</style>

</head>

<body>🐎</body>

</html>

28Variable fonts

https://djr.com/fit/

29 Variable fonts

Variable font Fit by David Jonathan Ross
was designed to fill up any space

https://djr.com/fit/

30Variable fonts

https://twitter.com/DIA_Studio/status/960553867124584448

31 Variable fonts

In the Google Fonts Twitter poll, 19% cited ani-
mated text effects as the main benefit of variable
fonts. Kinetic typography has been increasingly
popular over the last few years, and the ability
to animate variable fonts adds more fuel to that
trend. It might be worth exploring in conjunc-
tion with prefers-reduced-motion as some anima-
tions, though mesmerizing, can be a bit hectic.
The image on the left is by Mitch Paone of
@ DIA _ Studio, who specialize in kinetic identity
systems. You can hear him talk about their work
at: youtube.com  / watch?v=qTynk4wmXD8

https://twitter.com/googlefonts/status/1083783275284492288
https://css-tricks.com/introduction-reduced-motion-media-query/
https://twitter.com/DIA_Studio
https://www.youtube.com/watch?v=qTynk4wmXD8

32Variable fonts

http://spacetypegenerator.com

33 Variable fonts

spacetypegenerator.com

by Kiel Mutschelknaus

http://spacetypegenerator.com
http://spacetypegenerator.com

34Variable fonts

Email support

As of July 2019, Caniuse reports 85% global support for vari-
able fonts. In order to test email client support we choose
Amstelvar by David Berlow. It’s listed on the Google Fonts
early access page and can be downloaded from GitHub. Our
test file — stylecampaign.com / SVG / fonts / variable /cm / — includes
five paragraphs of text. The top two use semantic markup
like H1, so the client determines the styles of each element.
The next two place the styles inline which is how most email
designers still work, and the bottom example is inline with an
@ supports switch. We can determine from those cases what’s
supported, as if the two paragraphs differ it should only be a
result of using font-variation-settings.

Implementing variable fonts isn’t that different from how
we currently handle webfonts. The CSS property font-varia-
tion-settings is the only real change, as it allows you to assign
properties beyond what we’re familiar with. Everything is
defined under the umbrella of font-variation-settings, with the
parameters / axes in a comma delineated list. Each axis has a
four letter tag associated with it, and you only need to list the
ones in use. The five registered axes such as wdth and wght
are in lowercase, whereas custom axis are in caps. The value
beside the axis name maps to a position on that variation axis.
You can get those range values from Wakamaifondue.com or
axis-praxis.org, both break down the available features in a
variable font such as the number of axes etc.

Email support for variable fonts is ~ 42% and includes iOS
Mail and Apple Mail ( at least based on this TTF demo ). You
might come across the odd client that supports webfonts but
not variable fonts. It would show the custom font but not in
the  VF styles. The fallback that we used was Helvetica, and it
came in fine everywhere. So I think variable fonts are viable, it
just needs a proper run through with a real-world project, as
there’s bound to be caveats somewhere.

https://www.axis-praxis.org/specimens/amstelvar
http://www.stylecampaign.com/SVG/fonts/variable/cm/
https://wakamaifondue.com/
https://www.axis-praxis.org

35 Variable fonts

/* We built out the demo working from sample code on

developers.google.com/web/fundamentals/design-and-ux/typog-

raphy/variable-fonts */

/* Link to the variable font in the head as usual */

@font-face {

font-family: ‘AmstelvarAlpha’;

src: url(‘http://www.stylecampaign.com/SVG/fonts/Amstel-

varAlpha-VF.ttf’);

font-weight: normal;

font-style: normal;

}

/* If font-variation-settings are supported it serves up the

variable font,  if not the inline styles are rendered */

@supports (font-variation-settings: ‘wdth’ 200) {

*[class=font-amstelvar-sup-a]{font-family: ‘AmstelvarAlpha’

!important;

font-variation-settings: ‘wdth’ 320, ‘wght’ 90, ‘opsz’ 19,

‘GRAD’ 88;

}

}

https://developers.google.com/web/fundamentals/design-and-ux/typography/variable-fonts/
https://developers.google.com/web/fundamentals/design-and-ux/typography/variable-fonts/

36Filmstrips

Animated images as
SVG / SMIL filmstrips
and flipbooks

37 Filmstrips

Support for real video in email has been non-existent or
spotty over the years, so there’s a long tradition of fake video
workarounds. Starting with video Gifs in 2008, JPEG push,
cinemagraphs, and more recently Kristian Robinson’s faux-
video, and Alice Li’s rollover Gifs. It’s as if all email R&D
eventually leads to a video hack, and SVG is no different.

We inadvertently came across this SVG / SMIL option while
building our SVG Xmas slots game, as the mechanism is pretty
much the same. Slots consisted of three animated filmstrips,
with a mask showing the visible area. A PHP script then gener-
ated random offsets which moved each of the strips vertically
by a set amount, giving you a unique spin every time. Look-
ing at those long strips of slots it was easy to imagine replacing
them with strips of video. We knew from our SVG slider exper-
iment that you could incorporate raster images into an SVG
layout, so we more or less just switched the vector assets out
and adjusted the animation.

Just like slots the interaction and animation is driven by
SMIL, and we’re using inline SVG with an external image ref-
erence. The filmstrip is a jpeg and embedded into the SVG.
While working on jpeg push, we converted some video clips
into individual frames. As they were handy we used those same
images to create one vertical filmstrip in PS; you could auto-
mate this step if you were to use it often enough. While playing
with some long clips, we hit a 30,000px height limit on jpeg
files so we added the option of multiple strips just to be safe.

There’s one SMIL keyframe for each frame of video, so
hand-coding is slow going and prone to error. If you want to
make adjustments to say the frame rate, you need to update
the whole thing manually. After doing a couple by hand
Graeme gave up and wrote a PHP script that generates the
SVG code for the keyframes. Using a form you plug in the
resolution, number of strips, frame rate, whether to read
filmstrips from the top or bottom — can also run your video
backwards — and it spits out the SVG code.

http://stylecampaign.com/blog/2014/08/video-in-email/
http://www.stylecampaign.com/blog/blogmails/video/sears.htm
http://stylecampaign.com/blog/2011/02/dis-tech/
http://stylecampaign.com/blog/blogmails/cinegraph/cinegraph.html
https://litmus.com/blog/faux-video-a-fallback-for-video-in-email
https://litmus.com/blog/faux-video-a-fallback-for-video-in-email
https://litmus.com/blog/faux-video-a-fallback-for-video-in-email
http://stylecampaign.com/SVG/SMIL/slots-2018-dm.html
http://www.stylecampaign.com/SVG/xmslots/slots-inline-nw.php

38Filmstrips

The SMIL keyframes make up the
bulk of the code, so automating it
saves you a lot of work. A 3.5 sec. ani-
mation contains ~ 53 frames at 15  fps.
So the number of keyframes can get
big, really quick. File-size-wise you’ll

want to juggle resolution, length of
clip, image compression, frame rate,
etc. jpegs are more efficient than Gifs
and better quality, but you can use
whatever image format you like, or
stick with vector artwork.

39 Filmstrips

http://stylecampaign.com/SVG/SMIL/svg-filmstrip-000.html
http://stylecampaign.com/SVG/SMIL/svg-filmstrip-000.html
http://stylecampaign.com/SVG/SMIL/svg-filmstrip-000.html

40Filmstrips

/* Example code for a 3.5 sec SVG /SMIL filmstrip animation */

<svg xmlns=”http://www.w3.org/2000/svg” xmlns:link=”http://

www.w3.org/1999/xlink”/* define SVG parameters */>

<defs> /* viewport is size of a frame with mask as backup */

<clipPath id=”clipPath”>

<rect id=”clip” x=”100” y=”0” width=”1280” height=”544” />

</clipPath>

</defs>

<defs> /* defining an image object to use later */

<g id=”filmstrip”>

<image x=”0” y=”0” width=”1280” height=”29376”

xlink:href=”filmstrip.jpg” />

</g>

</defs>

<g id=”main-viewport”> /* group containing keyframe data */

<g style=”clip-path: url(#clipPath);”>

<use xlink:href=”#filmstrip” x=”100” y=”-28832”>

/* first keyframe set y position at this time */

<set attributeName=”y” attributeType=”XML” to=”-28288”

begin=”sr01.click+0.066666666666667s” fill=”freeze”/>

/* next two keyframes update y position at this time */

<set attributeName=”y” attributeType=”XML” to=”-27744”

begin=”sr01.click+0.13333333333333s” fill=”freeze”/>

<set attributeName=”y” attributeType=”XML” to=”-27200”

begin=”sr01.click+0.2s” fill=”freeze”/>

/* ... additional keyframe definitions go here

... */

41 Filmstrips

/* final keyframe */

<set attributeName=”y” attributeType=”XML” to=”0”

begin=”sr01.click+3.5333333333333s” fill=”freeze”/>

</use>

</g>

</g>

/* play button (circle and triangle) */

<g id=”control”>

<polygon points=”730,246 760,266 730,286” fill=”#d0d0d0”

stroke=”none” style=”fill-opacity:0.75;”>

<set attributeName=”points” attributeType=”XML”

to=”730,2046 760,2066 730,2086” begin=”sr01.click”

fill=”freeze”/>

<set attributeName=”points” attributeType=”XML” to=”730,246

760,266 730,286” begin=”sr01.click+4.1s” fill=”freeze”/>

</polygon> /* end of polygon that draws a triangle */

/* click circle with id ‘sr01’ that triggers an event which

is then used to animate the image (click + a time = trigger

for each keyframe) */

<circle id=”sr01” cx=”740” cy=”266” r=”40” stroke=”#d0d0d0”

stroke-width=”6” style=”fill:#d0d0d0;fill-opaci-

ty:0.0;stroke-opacity:0.75;cursor:pointer”>

<set attributeName=”cy” attributeType=”XML” to=”2066”

begin=”click” fill=”freeze”/>

<set attributeName=”cy” attributeType=”XML” to=”266”

begin=”click+4.1s” fill=”freeze”/>

</circle>

</g>

</svg>

423 of 14 SVG models from our flipbook

http://stylecampaign.com/SVG/SMIL/svg-flipbook-002.html

43 Flipbooks

We originally went with a filmstrip as that’s how
slots was configured, but you could use indi-
vidual frames instead like a flipbook. Jonathan
Ingram shared a SVG / SMIL flipbook back in
2012 ( bifter.co.uk/issue/17   ). In 2014 we shared a
few SVG / SMIL flipbooks as part of a 3D to SVG
tool write up. The flipbooks were created by
exporting a series of SVG vector assets that made
up a run cycle e.g. 14 frames in different posi-
tions. We then turned each SVG model on and
off, setting the timing for each keyframe. Our
models were a bit too big, but with more perfor-

mant artwork you’d have no problem.

http://www.bifter.co.uk/issue/17/
http://stylecampaign.com/SVG/SMIL/svg-flipbook-002.html

44Flipbooks

I think it was around five years ago that I saw
Playground Inc’s vector animations and won-
dered if we could do something similar in email.
Graeme used to work with Flash artists years
ago as a games programmer, and had seen some
really slick vector animations. Illustration is
always a trend in email design and SVGs have
many benefits over raster images. But it’s a lot of
effort — plus fallbacks — so I get why we don’t
see more SVG animations like this. Interest-
ingly Playground were using a “timer” powered
by Raphaël so that each SVG frame gets drawn
at a certain time. A JavaScript solution, so not
something we could use in email, but a similar
premise to the SMIL flipbook.

https://playgroundinc.com/blog/the-playground-vector-animation-process

45 Flipbooks

Vector animations by Playground Inc

from a sequence of 72 frames

https://playgroundinc.com/blog/the-playground-vector-animation-process
https://playgroundinc.com/blog/the-playground-vector-animation-process

46Flipbooks

/* Example code for SMIL flipbook using SVG artwork */

<svg version=”1.1” id=”svglayer” xmlns=”http://www

w3.org/2000/svg” xmlns:xlink=”http://www.w3.org/1999/xlink”

viewBox=”0 0 800 600” x=”0px” y=”0px” width=”800px”

height=”600px” xml:space=”preserve”/* define SVG parame-

ters */>

/* define SVG group for frame one, model pose one */

<g stroke-width=”1” stroke-miterlimit=”1”>

<animate

id=”frame1”

attributeName=”display”

/* 14 values corresponding to the 14 SVG polygon models in

the run cycle. inline = visible and none = not visible */

values=”inline;none;none;none;none;none;none;none;none;none

;none;none;none;none”

/* 14 keyframes for the 14 SVG models, values between 0-1 as

proportion of animation duration */

key Times=”0;0.076;0.152;0.228;0.304;0.38;0.456;0.532;0.608

;0. 684;0.76;0.836;0.912;1”

dur=”1s”

begin=”0s”

repeatCount=”indefinite” />

/* Polygon model data for first of the 14 poses */

<polygon fill=”#39210b” stroke=”#39210b”

points=”454.3,386.5 440.7,387.2 434.8,388.9” />

/* ... additional polygon data goes here

... */

<polygon fill=”#474318” stroke=”#474318”

points=”407.0,224.9 408.9,212.8 394.7,224.0” />

</g> /* end of polygon data for first model pose */

47 Flipbooks

/* repeat for the second model pose (frame 2) */

<g fill=”#000000” stroke=”#000000” stroke-width=”1”

stroke-miterlimit=”1” opacity=”0.4” filter=”url(#s-blur)”>

<animate

id=”frame2s”

attributeName=”display”

/* note how ‘inline’ is now second in the list as model two

is now visible and model one is ‘none’ or not visible */

values=”none;inline;none;none;none;none;none;none;none;none

;none;none;none;none”

/* Same 14 keyframe timings as easy to keep track of */

key Times=”0;0.076;0.152;0.228;0.304;0.38;0.456;0.532;0.608

;0.684;0.76;0.836;0.912;1”

dur=”1s”

begin=”0s”

repeatCount=”indefinite” />

/* Polygon model data for second of the 14 poses */

<polygon fill=”#1e1306” stroke=”#1e1306”

points=”461.1,434.5 438.1,416.6 445.3,436.7” />

/* ... additional polygon data goes here

... */

<polygon fill=”#474218” stroke=”#474218”

points=”394.3,230.0 394.2,217.3 379.8,227.7” />

</g> /* end of polygon data for second frame pose */

/* repeat for the remaining 12 frames or poses, adjusting

‘none’ and ‘inline’ values to turn them on and off */

<polygon fill=”#31261f” stroke=”#31261f”

points=”388.9,200.3 388.3,198.3 378.4,191.5” />

</g></svg> /* end of last model (frame 14) close SVG */

48Flipbooks

‘Video’ flipbook

If you take this basic flipbook technique you can rework it
using raster images. We took the code from one of the flipbook
examples and swapped out the SVG polygon models for jpeg
images, keeping the rest of the code the same.

/* replace SVG polygon model data with an image url */

<g>

<animate

id=”frame1”

attributeName=”display”

values=”inline;none;none;none;none;none;none;none;none;none

;none;none;none;none;none;none;none;none;none;none”

/* values between 0-1 as proportion of animation duration */

key Times=”0;0.052;0.105;0.157;0.21;0.263;0.315;0.368;0.42

1;0.473;0.526;0.578;0.631;0.684;0.736;0.789;0.842;0.894;0.

94;1”

dur=”1.333s”

begin=”0s”

repeatCount=”indefinite” />

<image x=”0” y=”0” width=”480” height=”204” xlink:href=”av/

av1197.jpg”/>

</g>

You end up with a 1.3 sec video sequence, containing 20
frames at ~15 fps. Single frames are less complicated as there’s
no need to calculate filmstrip offsets, just the keyframe timing.
It really only needs three per frame for off/on/off, it’s just
easier to keep track of this way. For longer sequences you’d
want to optimize it, and possibly write a script to generate the
keyTimes. As it’s a sequence of individual frames, you don’t
need to piece together a filmstrip, though that’s something else
you could automate. I’d also add a slight delay at the start to
give it time to buffer a few frames.

http://stylecampaign.com/SVG/SMIL/svg-flipbook-004.html

49 Flipbooks

Frame #8 keyTime 0.368Frame #7 keyTime 0.315

Frame #5 keyTime 0.21 Frame #6 keyTime 0.263

Frame #4 keyTime 0.157Frame #3 keyTime 0.105

Frame #2 keyTime 0.052Frame #1 keyTime 0

Eight jpeg frames — from a series of 20 — each
is turned on & off at different keyTimes that fall
between 0 –1 to create a flipbook.

http://stylecampaign.com/SVG/SMIL/svg-flipbook-004.html
http://stylecampaign.com/SVG/SMIL/svg-flipbook-004.html
http://stylecampaign.com/SVG/SMIL/svg-flipbook-004.html
http://stylecampaign.com/SVG/SMIL/svg-flipbook-004.html
http://stylecampaign.com/SVG/SMIL/svg-flipbook-004.html
http://stylecampaign.com/SVG/SMIL/svg-flipbook-004.html

50Flipbooks

The downside of the flipbook technique is you’d end up
with more code and HTTP requests. As instead of bringing
in one big image, you’d need to request multiple and they’d
all be listed in the code. If using raster images it would be
inline — which would count towards Gmails ~100 K limit — but
you can externally reference the frames if using SVGs. It’s not
so bad for a 14 frame sequence, but with a 10 sec video clip the
frame count would start to climb.

 Adding controls to a flipbook also comes with different
considerations. With a filmstrip a click triggers an event, and
the event drives the animation. Whereas a flipbook contains
a series of keyTimes which drives the animation. You could
use ‘ begin ’ to control a flipbook animation via a click event,
but it’s not something we’ve looked into thoroughly. For now
our flipbooks loop indefinitely. Another consideration, is with
SMIL it’s one button per event so it only plays once. If you
want to press play multiple times without refreshing the page,
you need to layer up the buttons. For example SVG slots has
five identical buttons, one for each spin. Most of our demos
have the one button, but if you were to use this in production
I’d add a couple more just to be safe.

We haven’t dug into all the nuances of animating sequences
of images with SMIL, this was just a two-for-one back when
we were building slots. There’s bound to be other ways to go
about this, as flipbooks and filmstrips are both old techniques.
Depending on what you’re trying to do, it might be worth
comparing the two if you want to explore further.

Creative layouts

One interesting aspect to all this, is the creative possibilities
that being part of an SVG brings. You can incorporate your
‘video’ into elaborate layouts. As SVG has many useful features
like clip paths, filters, overlapping live text, responsive design,
interaction and spline animation.

http://stylecampaign.com/SVG/SMIL/

51 Flipbooks

It’s strange to consider SVG has been around since 2000-
ish, we could have been using this in place of those tiny
Gifs a decade ago. Though I’m not sure what SVG support
would’ve looked like back then. Today inline SVG has ~ 43%
support, based on the top ten email clients from emailclient-
marketshare.com for June 2019. This includes iOS, Mac Mail,
Outlook for Mac, Native Android and Samsung Mail. Though
everyone’s support numbers will differ. IE doesn’t support
SMIL animation, so only the first frame would show. You could
serve up an animated video Gif fallback in IE and elsewhere,
if you really wanted to get into it. If you’re working with SVG
and looking for a native “animated images” solution for either
vector or raster artwork, you may find this useful.

52Shape morphing

I wanted to take another look
at SVG  shape morphing

53 Shape morphing

I wanted to revisit SVG shape mor-
phing to see where we stand with
support. Shape morphing is typi-
cally more lightweight than filmstrips
or flipbooks. As you have a chunk
of code that draws say a circle, and
another chunk of code that reposi-
tions the circle’s points into a trian-
gle. It then interpolates between the
two shapes, which means it generates
the inbetween states for you. Whereas
a flipbook or filmstrip needs all the
extra data for the inbetween frames.

Five years ago we were trying to
create character animations by mor-
phing between a series of polygon
meshes. We chose to work with poly-
gons as Graeme had written a tool
which converted 3D polygons into
SVG polygons. Polygons have straight
edges, in our case made up of 3-sided
triangles or 4-sided-quads. They’re
constructed out of interconnect-
ing points — like join the dots — each
defined by their x / y coordinates
within the SVG viewport. The more
point positions you need to store, the
more code it generates increasing the
file-size. With enough polygons you
could mimic curves, but the mesh
would likely be dense. So even though
I like that low-poly aesthetic, it’s not
going to be suitable for all projects.

If you want to morph between
organic, curved edged vector shapes
it’s best to use splines instead of poly-
gons. Spline data is slightly different
in that you store the point coordinates,

along with their control points. If
you’ve used the pen tool in PS, it’s
those handles you can drag to change
the flex of the spline between points.
Besides drawing organic shapes, you
can also place text along a spline, ani-
mate an object along it, or use it as
a mask or clipPath. So for my test-
ing this time around, I decided to shift
from polygons to splines.

Shape morphing works by essen-
tially shifting a bunch of points
around, and telling it where you want
to reposition them. Like bait balls,
those same points reform into dif-
ferent shapes. You start out with a
base shape. As each shape has to
have the same number of points in
the same order — at least when work-
ing with SMIL — you want it to be the
most complicated. In our demo the
star requires the most points to draw
compared with a circle or square, so
it’s the base. You can then manip-
ulate your base shape to form new
target shapes in a vector editor, pos-
sibly by tracing over some drawn key-
frames. You don’t need a target shape
for every frame, as shape morphing
smoothly tweens between keyframes.

In order to get the point data you
can export the different model posi-
tions or ‘ keyframes’ from e.g . Illustra-
tor as individual SVG s, view source
and then copy and paste the control
point data into your HTML. When you
first define the base shape in the code
it can be any one of your keyframe

http://stylecampaign.com/blog/2014/02/svg-animation/
http://stylecampaign.com/blog/2014/03/3d-to-svg/

54Shape morphing

Polygon with three points and straight edges ( left ),
spline with additional control points which allows
you to create curved edges ( right )

55 Shape morphing

shapes, as they’re all made up of the
same number of points by then. You
are just saying here’s the chunk of
data we’ll be shifting around.

You then define the animation, by
setting a duration and telling it how
you want to position all that base
point data on frame one. Again your
first keyframe can be any one of your
shapes, you’re just saying on the first
frame place that group of points like
so. You then set a target shape or
series of target shapes for it to morph
between. If you go from a square to a
circle like on p 57, it will just pop from
a square to a circle. You’ll need to add
a third keyframe — a new set of data
points — for it to loop from a square
to a circle, then back to a square again.
I just wanted a pared-down example
as it’s easier to follow.

There are a number of ways to add
an SVG to an HTML email, and each
has varying levels of support. In order
to test shape morphing — effectively
a test of SMIL support — I stuck with
inline SVG and SVG image. Image has
the broadest support of all the embed-
ding techniques at ~  62 %, based on
emailclientmarketshare.com for May
2019. It includes iOS, Apple Mail, Out-
look for Mac, Native Android, Sam-
sung, Android Outlook, Gmail App
IMAP, Windows 10 Mail, Yahoo Mail! ,
Outlook.com, Office 365, AOL Mail
and Thunderbird. SVG images sup-
port SMIL animation, so shape mor-
phing will also run in those clients.

That’s not bad coverage, and you
could fallback to a raster image else-
where. Shape morphing when placed
inline has less support at ~43%. It
includes iOS, Apple Mail, Outlook on
Mac, Thunderbird and Samsung Mail.
Browser support is solid except for IE
which doesn’t support SMIL. IE dis-
plays a static SVG — like Gifs in Out-
look — which for many illustrations or
backgrounds would be fine. Or you
could use UA targeting to serve up
different content. In 2015 SMIL was
briefly deprecated in Chrome 45 and
then reinstated, I guess it’s in a hold-
ing pattern for now.

Support isn’t the only consideration
though, as different techniques have
varying capabilities. SVG image sup-
ports SMIL animation but not inter-
action, whereas inline SVG supports
both. You can manipulate the parts
of an inline SVG using CSS, you can’t
with an SVG image. Images are exter-
nal, so everything we’ve come to know
about dynamic images in email also
applies here. Inline SVG s aren’t as
suited to dynamic content as you’re
limited to what gets sent out in the
HTML. It’s these types of project
requirements that usually determine
how you’ll embed the SVG.

Basic SVG image support is inch-
ing up in email clients, and SMIL ani-
mation is built in as a native solution.
This means shape morphing is more
viable than five years ago, as long as
SMIL browser support stays current.

https://emailclientmarketshare.com/

56Shape morphing

square      circleMorphing

http://stylecampaign.com/SVG/SMIL/svg-sample-003.html
http://stylecampaign.com/SVG/SMIL/svg-sample-003.html
http://stylecampaign.com/SVG/SMIL/svg-sample-003.html

57 Shape morphing

<svg xmlns=”http://www.w3.org/2000/svg” /* define SVG parameters */>

/* base shape data (square but could be circle) */

<path fill=”none” stroke=”#114460” stroke-width=”2” d=”M398.01,80.04

4c1.282,0.015,2.128,1.142,2.143,2.424 c0.071,7.839,0.525,303.622,0.2

87,313.027c-0.076,2.911,0.388,3.277-2.411,3.284c-8.695,0.02-306.306-

0.824-314.243-0.888c-3.621-0.028-3.549-0.087-3.602-3.555c-0.089-

5.803,0.279-303.958,0.573-311.282c0.071-1.779,1.341-3.3,2.728-3.314

C92.983,79.645,389.112,79.938,398.01,80.044z”> /* end point data */

<animate attributeName=”d” /* animation parameters */

dur=”2s” /* animation duration */

repeatCount=”indefinite”

/* keyframes follow */

values=”M398.01,80.044c1.282,0.015,2.128,1.142,2.143,2.424 c0.

71,7.839,0.525,303.622,0.287,313.027c-0.076,2.911,0.388,3.277-

2.411,3.284c-8.695,0.02-306.306-0.824-314.243-0.888 c-3.621-

0.028-3.549-0.087-3.602-3.555c-0.089-5.803,0.279-303.958,0.573-

311.282c0.071-1.779,1.341-3.3,2.728-3.314 C92.983,79.645,389.112,7

.938,398.01,80.044z; /* data for starting shape (square) */

M354.385,111.599c23.167,21.333,59.115,72.234,57.382,124.901

c2.066,71-29.927,107.005-41.875,123.214c-21.597,21.106

59.392,62.413-136.483,62.413c-71.241,0-109.702-39.962-121.952-49.212

c-20.083-21.417-52.289-53.081-56.45 125.081c1.495-76.667,29.877-

107.214,56.277-135.263 c19.935-18.074,55.885-45.071,122.104-47.269C2

96.833,65.303,337.885,97.933,354.385,111.599z” /* data for target

shape (circle) */

/* end of keyframe data */

fill=”freeze”

calcMode=”spline”

keySplines=”0.4 0.8 0.5 1” /* easing & faring on one morph */

keyTimes=”0; 1”/> /* two keyframes as proportion of duration */

</path>	

</svg>

Mask  (above)  reveals    &    obscures circle underneath

Moon path      morph

http://stylecampaign.com/SVG/SMIL/svg-sample-005.html
http://stylecampaign.com/SVG/SMIL/svg-sample-005.html
http://stylecampaign.com/SVG/SMIL/svg-sample-005.html
http://stylecampaign.com/SVG/SMIL/svg-sample-005.html

59 Shape morphing

/* Moon phase animation using one spline as a mask  (left)  to reveal

 the moon,  can also do this with two splines see demo */

<svg xmlns=”http://www.w3.org/2000/svg” /* define SVG parameters */>

<circle cx=”200” cy=”200” r=”188” /* circle revealed behind mask */

stroke=”#606060” fill=”#606060”/> /* give circle a color */

/* define the spline (path) */

<path d=”M200,10 C200,10,400,10,400,200 S200,390, 200,390

S400,390,400,200 C400,10,200,10,200,10z” stroke=”#202020”

fill-rule=”nonzero” fill=”#202020”> /* color it */

<animate attributeName=”d”

dur=”10s” /* animation duration */

repeatCount=”indefinite”

/* Three keyframes ( Mxxx the start of each ) */

values=”M200,10 C200,10,400,10,400,200 S200,390, 200,390

S400,390,400,200 C400,10,200,10,200,10z;

M200,10C200,10,400,10,400,200 S200,390,200,390 S0,390,0,200

C0,10,200,10,200,10z;

M200,10 C200,10,0,10,0,200S200,390,200,390 S0,390,0,200C0,10,200,10

,200,10z;

fill=”freeze”

calcMode=”spline”

keySplines=”1 1 1 1;1 1 1 1”/>

</path>

</svg>

http://stylecampaign.com/SVG/SMIL/svg-sample-005.html

Animate an object along any shaped spline

Moon path      follow

http://stylecampaign.com/SVG/SMIL/svg-sample-006.html
http://stylecampaign.com/SVG/SMIL/svg-sample-006.html

61 Shape morphing

/* Takes moon phases and animates it along a path */

<svg width=”360” height=”360” viewBox=”0 0 400 400” xmlns=”http://

www.w3.org/2000/svg” /* define SVG parameters */>

/* define path named moonPath */

<path d=”M240 130 C386,130 386,350 240,350 S 94,130 240,130 Z”

stroke=”none” fill=”transparent” id=”moonPath”/>

<g id=”moon”>

<circle cx=”-40” cy=”-40” r=”84” fill=”#606060”/> /* moon */

<g transform=”translate(-130,-130) scale(0.45)”>

<path d=”M200,0c0,0,200,0,200,200S200,400,200,400 s200,0,200-

200 C400,0,200,0,200,0z” stroke=”#202020” fill-rule=”nonzero”

fill=”#202020”>

<animate attributeName=”d”

dur=”10s”

repeatCount=”indefinite”

values=”M200,10 C200,10,400,10,400,200 S200,390, 200,390

S400,390,400,200 C400,10,200,10,200,10z; M200,10

C200,10,400,10,400,200 S200,390, 200,390 S0,390,0,200

C0,10,200,10,200,10z; M200,10 C200,10,0,10,0,200 S200,390,200,390

S0,390,0,200C0,10,200,10,200,10z;” /* moon spline animation */

fill=”freeze”

calcMode=”spline”

keySplines=”1 1 1 1;1 1 1 1”/>

</path>

</g>

<animateMotion begin=”0.0s” dur=”12.s” repeatCount=”indefinite”>

<mpath xlink:href=”#moonPath”/> /* sends moon around moonPath */

</animateMotion>

</g>

</svg>

http://stylecampaign.com/SVG/SMIL/svg-sample-006.html

62Grid

Emailzine issue # 01

Whenever I read a magazine I’m
always curious about their grid, espe-
cially if it’s about design or type. So
for what it’s worth here’s mine. I’m
using the typeface Plantin MT Pro for
body copy and titles, and Roboto Mono
for the code samples and folio. My
primary body copy is 9.9 / 13.5 points,
giving me my base unit of 13.5 pt.
My grid modules are 2×2 units or
27×27 pt each, with one unit inbe-
tween. Excluding the margins, my
grid is 8×12 modules  ( right ).The full-
width is 310.5 pt, though I’m only
using seven modules  270 pt  /  22 p6 for
single column text.

One early question I had was
whether this small A5 format could
accommodate a two column layout.

I’d read that ~ 13 picas per column
was decent, and there’s also the 7 – 10
words per line guide. So I reduced the
two column text to 8.9 pt, and it takes
up all eight modules. Each 4-module
column is 148.5 pt  / 12.37 picas. I later
came across a few A5 sized magazines
that all used two column as their main
layout, so that reassured me.

The typeface used on the cover is
WHOA by Scribble Tone, which you
can license from www.futurefonts. xyz.
You can send me any feedback:
anna @ stylecampaign.com

https://www.futurefonts.xyz/scribble-tone/whoa
https://www.futurefonts.xyz/scribble-tone/whoa
mailto:anna%40stylecampaign.com?subject=Emailzine%20%2301

63 Grid

Issue  # 01

