
Contents

6 – 13

14 – 35

36 – 51

52 – 61

issue # 01

2

Designed by Anna Yeaman

Contact : anna@ stylecampaign.com

Demos : http: / / stylecampaign.com / SVG / SMIL /

Resources : https: / / bit.ly / 2JhLwcO

3

After writing about email design on

the stylecampaign blog for eleven

years, I wanted to create something

you could take offl ine. Attending

lazine fest.com inspired me to try and

put together an email zine. It’s nice to

make something by hand, and I like

how easy-going the format is. As with

any zine, I wrote about stuff I’m into

or currently learning about. There’s

not a theme but I realized as I was

writing it, that much of the content

overlaps a bit. Variable fonts touch

on accessibility, dark mode and fi lm-

strips; and are essentially the same as

SVG shape morphing in that a bunch

of outlines are being shifted around.

SVG fi lmstrips and fl ipbooks are just

a bit of fun, some R&D I’d thought to

share. Smart Invert brings us back to

accessibility, and a loose tie-in with

SVG in that we might see more of

it in email as a result of dark mode.

There’s also a bunch of online demos

and resources if you want to have a

play (see left), though I tried to write it

in a way that makes them optional.

I hope you enjoy it – Anna

8Smart invert

r45 g49 b55r237 g236 b234

r223 g166 b60r26 g68 b54

r21 g20 b155r191 g37 b25

This page shows the default colors, and (p 9)
under Smart Invert. Shifts such as red – blue,

can lead to mixed up color cues.

Contents

Accessibility feature Smart Invert
as a pseudo iOS dark mode

Variable fonts generate multiple
styles from a single font fi le

Animated images as SVG / SMIL
fi lmstrips and fl ipbooks

Revisiting support for SVG
shape morphing

6Smart invert

Accessibility feature Smart Invert
as a pseudo iOS dark mode

7 Smart invert

I came across the article, ‘Dark mode

as iOS accessibility feature’ written

back in 2014 on cgpgrey.com. Grey

talks about how he has fl oaters in his

vision, little dots that get in the way of

his fi eld of view. Black text on white

aggravates it, whereas dark mode

would make reading more comfort-

able. He goes on to mention a pseudo

dark mode that people have been

using for years called I nvert Colors.

Invert Colors is an accessibility fea-

ture that reverses all the colors on the

screen, including HTML email crea-

tive. On iOS 12 it’s found under Set-

tings / General /Accessibility / Display

accommodations /Invert Colors. It can

aid people with poor vision, sensitiv-

ity to light or color blindness. In com-

bination with other settings like Color

Filters, it can address a number of

visual impairments.

When Invert Colors is activated

black text on white becomes white on

black. Chris Coyier jokingly referred

to it as “halloween mode” years ago

on Twitter, as blue on white interface

elements become orange on black. It’s

a bit heavy-handed for some people

as everything is inverted including

images. Even so it’s been in use for

over fi ve years as a general purpose

dark mode. Part of the appeal is that

you can map accessibility shortcuts

to the home or side button, making

it easy to switch modes for more sit-

uational use. Apple were aware that

Invert Colors was being used as

a dark mode stand in, so with the

release of iOS 11 they fi ne tuned it by

adding a Smart Invert option. The

original Invert Colors was renamed

Classic Invert. The diff erence between

the two is that Smart Invert doesn’t

alter images, media and some apps

that already use dark color styles. This

made it a lot more practical for casual

users. I imagine a number of people

have been viewing emails under these

settings, as it was the closest iOS had

to a real dark mode. It’s more likely

when you consider mobile opens tend

to spike late at night and early morn-

ing, while people read email in bed.

With the release of iOS 13 and

an offi cial dark mode Smart Invert

will become obsolete for many, but

it might still function as a back up.

During WWDC 2019, Apple posted

the video ‘Supporting dark mode in

your web content’ which also has a

section on email messages. In the

video they show how plain text emails

will automatically be adjusted but

HTML emails will not auto-darken

(just like macOS Mojave). They

explain that developers are in control

of how their content appears, and as

such have to adopt color-scheme and

prefers-color-scheme in order to cus-

tomize their emails for dark mode. So

Smart Invert might still be in limited

play, as it’s a known and reliable way

to view HTML emails in ‘dark mode’.

At least until we get up to speed and

more emails contain dark styles.

12Smart invert

“ Try the smart invert feature – imagine dark mode email.

really neat.” @ rstevens October 2017

9 Smart invert

r45 g49 b55r237 g236 b234

r223 g166 b60r26 g68 b54

r21 g20 b155r191 g37 b25

Colors under Smart Invert; some of the text in

our test — stylecampaign.com / SVG / invert / — be-

came unreadable as the tone had also shifted.

10Smart invert

r45 g49 b55r237 g236 b234

r223 g166 b60r26 g68 b54

r21 g20 b155r191 g37 b25

People combine Smart Invert & the grayscale fi lter
as it’s “soothing” and a “battery saver mode”. Mono-

chromatic vision is rare — 1 in 33,000 — but more

could be viewing email in grayscale than we realized.

11 Smart invert

r45 g49 b55r237 g236 b234

r223 g166 b60r26 g68 b54

r21 g20 b155r191 g37 b25

How the colors from (p8) look under PS’ pro-

tanopia red / green color blindness simulator:

View / Proof setup / Color blindness / Protanopia

16Variable fonts

Variable font WHOA designed by Scribble Tone, originally had the one

Radness axis slider. Version 0.3 now has four axes giving you separate

control of the horizontal off set, vertical off set, rotation and zoom.

13 Smart invert

I looked at Mail on iOS 12 using

Smart Invert, to see how HTML

emails appear to someone who isn’t

colorblind. The majority of emails are

light themed to begin with so they

convert well. Though you’ll still want

to run your creative through some-

thing like contrast-ratio.com. HTML

emails that use live text and back-

ground colors etc. provide a better

experience than image-based emails,

as images are left untouched and are

often bright white. Emojis are still

inverted under Smart Invert, and

the unfamiliar colors can make them

harder to decipher in subject lines.

When inverted, black image-based

headings and logos are overlaid on

a black background. If you’re using

transparent PNGs they’ll disappear.

In my 2018 small text study, 27.7%

used image-based headings along-

side live text. This is from 50 emails so

it’s not statistically sound, but it’s still

a fairly common practice. Looking

ahead to ‘prefers-color-scheme’, we

might see more use of SVG in email

design for icons and illustrations. As

you can adjust the colors of an inline

SVG with CSS, so you only need the

one set of assets. Another common

occurrence using Smart Invert is if

you’ve cropped an image assuming a

white background it can look messy

against black. Rémi Parmentier men-

tioned similar issues in ‘Dealing with

Outlook.com’s dark mode’, the same

group of problems show up here.

It can get a bit confusing using iOS

invert modes if you’re not colorblind.

As Grey mentioned, “Invert colors

makes the less important parts of the

screen pop and subdues the parts

that are supposed to draw your atten-

tion”. Mixed up color cues, and unfa-

miliar brand colors can be disorientat-

ing. Though it’s a useful exercise for

designers, as it can uncover any con-

fusing aspects of a design.

Because not everyone views color

in the way the designer intended,

WCAG 2.1 states that color shouldn’t

be the only visual means of convey-

ing information. A new iOS 13 feature

called ‘Diff erentiate without color’

addresses this. It allows designers to

replace interface items that rely only

on color with an alternative. For cases

where it’s diffi cult to have those col-

orblind adjustments shown by default.

Color vision defi ciencies aff ect 8% of

men worldwide, and 0.5% of women

according to colourblindawareness.

org, with red-green blindness being

the most common. You can simu-

late what this looks like in PS, under

View / Proof setup / Color blindness

and pick protanopia or deuterano-

pia. I went into this to see what email

looks like under ‘dark mode’, but it’s

left me wanting to learn more about

color accessibility. Besides all the

color and contrast tools which you’re

probably familiar with, Geri Coady’s

book, Color Accessibility Workfl ows

looks like a good introduction.

14Variable fonts

Glyph outlines like the letter ‘ I ’ can

shapeshift into diff erent weights

Variable fonts generate multiple
styles from a single font fi le, this
is possible as character outlines
can change their form

15 Variable fonts

Currently when you purchase a webfont you choose from a

range of individual styles such as condensed or bold, and each

of these is a separate fi le. The advantage of OpenType variable

fonts is that they can generate multiple styles from a single

font fi le. This is possible as character outlines can morph

between extremes, such as a thin to black weight. If you squint

and imagine the image to your left is a letter ‘I’, its outline can

shapeshift across a range of weights; all drawn from the same

glyph and with the same number of points.

The full range of weight options falls along a design-vari-

ation axis, from which the type designer is able to select

diff erent locations and assign names e.g. thin, regular or bold.

These pre-defi ned options are called named instances. If you

require a weight that falls inbetween a named instance you can

defi ne it yourself, allowing for more control and choice. As

type designer DJR explains,“Variable fonts break down that

wall between type designer and type user, because now you

have access to stuff that previously only I had access to.”

Weight is just one of fi ve registered design axes introduced

with the OpenType 1.8 font specifi cation. There’s also width,

slant, optical size and italics. Type designers can also add their

own custom axes. For instance WHOA by Scribble Tone has

an appropriately named ‘ Radness ’ axis, and Jabin by Frida

Medrano has a ‘ Swash ’ axis. Design axis can be combined to

create a multi-axis font, off ering a vast array of potential com-

binations all rendered from the same font fi le. This increase in

choice comes at a smaller fi le-size — assuming you need more

than a couple of styles to begin with — and fewer requests.

OpenType font variations were introduced at the ATypI

conference in 2016 in a collaboration between Adobe, Google,

Apple and Microsoft. In a recording of the OpenType ses-

sion Simon Daniels shared,“The fact that we have four major

companies here, should be a statement that we are expecting

this to be supported in all major platforms, OS platforms and

major content creation platforms.”

20Variable fonts

Google Fonts have a few variable fonts on their early access

page, and appear to be considering how best to implement

them. This Twitter poll is from @ googlefonts, January 2019:

If you know what Variable Fonts are, what benefi ts are the

most important to you?

18% Custom expressive fonts

36% Finer text typography

27% Same fonts, faster

19% Animated text eff ects

Performance gains received the second highest number

of votes. Variable fonts are smaller in size compared to a

font family of individual styles, as they interpolate or morph

between outlines. The type designer draws the letter ‘ G ’ for

example at its lightest and heaviest — the two extremes on a

weight variation axis — and the in-betweens are dynamically

generated. So only the data from those two or three key out-

lines make up the fi le size, even though we have access to a

full-range of weights. This is just like SVG shape morphing on

p 52. You only need the SVG data that describes say a circle

and a target shape like a square, and it tweens between the two.

Although variable fonts are more performant, they can still

contain bloat. In the write up ‘How to use variable fonts in

the real world’ Clearleft created a subset of the variable font

Source Sans (essentially ditching parts of the font they didn’t

need), and converted from TTF to WOFF2 which took them

from 491Kb down to 29Kb. In an eff ort to make these types

of optimizations readily available, Jason Pamental a member

of the W3C Web Fonts Working Group, shared that they’re

exploring something along the lines of font streaming, or ‘pro-

gressive font enrichment’. This involves only serving up parts

of the font as and when needed; across multiple page views or

sites. Google Fonts have built out a proof of concept at: fonts.
gstatic.com/experimental/incxfer_demo.

17 Variable fonts

Variable font FF Meta designed by Erik Spiekermann, has a weight axis

for both the roman and italic (above) versions. Jason Pamental built out

a demo site at codepen.io / jpamental / pen /MGEPEL

18Variable fonts

Frida Medrano’s variable font Jabin

(above & right) has two axes: weight

and swash. Weight goes from light to

bold, whereas swash is a custom axis

that controls the ‘swashiness’ of the

uppercase letters. Left shows a light

weight with no swash, while right is

a bold weight with a heavy swash.

Everything between those extremes is

available: v-fonts.com / fonts / jabin

19 Variable fonts

24Variable fonts

Variable font UT Morph, by Wete and Oscar Cobo. In-

spired by Wim Crouwel, with a Positive and a Negative

axis. Letter ‘D’ (left) Iso and (right) Hyper weight.

21 Variable fonts

‘Finer text typography’ or responsive typography was listed

as the top benefi t in the poll. More control over the typesetting

for improved readability and accessibility is a strong feature.

In Isabel Lea’s variable font experiment, the word ‘ Loud ! ’

gets bolder as she claps. Bram Stein showed how a variable

font can aid justifi cation. While Jason Pamental demonstrated

how increasing the grade axis — Grade changes the weight of

a typeface without altering glyph widths, so the text doesn’t

refl ow — can improve the readability of reversed type in dark

mode. Other demos show variable fonts responding to device

width, human gestures, ambient light and distance.

Keeping with the more experimental side of variable

fonts, there are many interesting new typeface designs such

as those found on futurefonts.com, and through David Jona-

than Ross’ fontofthemonth.club. Kinetic type, colored variable

fonts, Laurence Penney’s horse animation that’s a variable font,

Toshi Omagari’s variable font converted from an animated Gif.

People are still exploring what this new format can do.

There is a slight risk that the ability to adjust everything

might add complexity to a type system; and maintaining

that along with a bunch of unfamiliar custom axes could be

challenging for some clients. Type is often the fi rst thing to

breakdown in a modular email system, so it might require

some extra guidance. Adidas built out a custom Illustrator

panel to aid designers working with their variable font Adineue

PRO. It even has a fi t to width button that Jeremy Mickel, the

font designer said, “Turns just some text into something that

feels like a sign”. The tooling around variable fonts is still

being fi gured out, and existing typefaces reworked. So there’s

time to get familiar before we start using them in production.

If you want to try out some variable fonts yourself, there

are a number available on v-fonts.com and axis-praxis.org.

Illustrator and Photoshop CC already support variable fonts,

with InDesign support coming soon. In PS look for a VAR to

the right in your font menu, then check the properties panel.

22Variable fonts

Variable font Graduate by Eduardo

Tunni (above & right) has 12 axes.

Left shows the Grade axis set to a

range of 0 – 20 , useful for reversed

type when switching to dark mode.

Right features the X Opaque axis set

to a range of 40 – 140, this varies the

horizontal (x-direction) thickness of

the strokes. You can play with all 12

axes at: v-fonts.com / fonts / graduate

23 Variable fonts

28Variable fonts 25 Variable fonts

26Variable fonts

Instead of an axis that adjusts e.g. the weight of a variable

font, Laurence Penney is using the axis as a fi lmstrip to

create animations: axis-praxis.org /playground / horse

27 Variable fonts

/* Code by Laurence Penney, you end up with a

 horse animation that runs in Mail */

<!DOCTYPE html>

<html>

<head>

<meta charset=”UTF-8”>

<style>

@font-face {

 font-family: Muybridge;

 src: url(MuybridgeGX.woff2);

}

@keyframes Gallop {

 from {

 font-variation-settings: “TIME” 0;

 }

 to {

 font-variation-settings: “TIME” 1000;

 }

}

body {

 font: 320px Muybridge;

 animation: Gallop 0.5s linear 0s infinite;

}

</style>

</head>

<body> </body>

</html>

32Variable fonts 29 Variable fonts

Variable font Fit by David Jonathan Ross

was designed to fi ll up any space

30Variable fonts 31 Variable fonts

In the Google Fonts Twitter poll, 19% cited ani-

mated text eff ects as the main benefi t of variable

fonts. Kinetic typography has been increasingly

popular over the last few years, and the ability

to animate variable fonts adds more fuel to that

trend. It might be worth exploring in conjunc-

tion with prefers-reduced-motion as some anima-

tions, though mesmerizing, can be a bit hectic.

The image on the left is by Mitch Paone of

@ DIA _ Studio, who specialize in kinetic identity

systems. You can hear him talk about their work

at: youtube.com / watch?v=qTynk4wmXD8

36Filmstrips

Animated images as
SVG / SMIL fi lmstrips
and fl ipbooks

33 Variable fonts

spacetypegenerator.com

by Kiel Mutschelknaus

34Variable fonts

Email support

As of July 2019, Caniuse reports 85% global support for vari-

able fonts. In order to test email client support we choose

Amstelvar by David Berlow. It’s listed on the Google Fonts

early access page and can be downloaded from GitHub. Our

test fi le — stylecampaign.com / SVG / fonts / variable /cm / — includes

fi ve paragraphs of text. The top two use semantic markup

like H1, so the client determines the styles of each element.

The next two place the styles inline which is how most email

designers still work, and the bottom example is inline with an

@ supports switch. We can determine from those cases what’s

supported, as if the two paragraphs diff er it should only be a

result of using font-variation-settings.

Implementing variable fonts isn’t that diff erent from how

we currently handle webfonts. The CSS property font-varia-
tion-settings is the only real change, as it allows you to assign

properties beyond what we’re familiar with. Everything is

defi ned under the umbrella of font-variation-settings, with the

parameters / axes in a comma delineated list. Each axis has a

four letter tag associated with it, and you only need to list the

ones in use. The fi ve registered axes such as wdth and wght
are in lowercase, whereas custom axis are in caps. The value

beside the axis name maps to a position on that variation axis.

You can get those range values from Wakamaifondue.com or

axis-praxis.org, both break down the available features in a

variable font such as the number of axes etc.

Email support for variable fonts is ~ 42% and includes iOS

Mail and Apple Mail (at least based on this TTF demo). You

might come across the odd client that supports webfonts but

not variable fonts. It would show the custom font but not in

the VF styles. The fallback that we used was Helvetica, and it

came in fi ne everywhere. So I think variable fonts are viable, it

just needs a proper run through with a real-world project, as

there’s bound to be caveats somewhere.

35 Variable fonts

/* We built out the demo working from sample code on

developers.google.com/web/fundamentals/design-and-ux/typog-

raphy/variable-fonts */

/* Link to the variable font in the head as usual */

@font-face {

font-family: ‘AmstelvarAlpha’;

src: url(‘http://www.stylecampaign.com/SVG/fonts/Amstel-

varAlpha-VF.ttf’);

font-weight: normal;

font-style: normal;

}

/* If font-variation-settings are supported it serves up the

variable font, if not the inline styles are rendered */

@supports (font-variation-settings: ‘wdth’ 200) {

*[class=font-amstelvar-sup-a]{font-family: ‘AmstelvarAlpha’

!important;

font-variation-settings: ‘wdth’ 320, ‘wght’ 90, ‘opsz’ 19,

‘GRAD’ 88;

}

}

40Filmstrips

/* Example code for a 3.5 sec SVG /SMIL filmstrip animation */

<svg xmlns=”http://www.w3.org/2000/svg” xmlns:link=”http://

www.w3.org/1999/xlink”/* define SVG parameters */>

<defs> /* viewport is size of a frame with mask as backup */

<clipPath id=”clipPath”>

<rect id=”clip” x=”100” y=”0” width=”1280” height=”544” />

</clipPath>

</defs>

<defs> /* defining an image object to use later */

<g id=”filmstrip”>

<image x=”0” y=”0” width=”1280” height=”29376”

xlink:href=”filmstrip.jpg” />

</g>

</defs>

<g id=”main-viewport”> /* group containing keyframe data */

<g style=”clip-path: url(#clipPath);”>

<use xlink:href=”#filmstrip” x=”100” y=”-28832”>

/* first keyframe set y position at this time */

<set attributeName=”y” attributeType=”XML” to=”-28288”

begin=”sr01.click+0.066666666666667s” fill=”freeze”/>

/* next two keyframes update y position at this time */

<set attributeName=”y” attributeType=”XML” to=”-27744”

begin=”sr01.click+0.13333333333333s” fill=”freeze”/>

<set attributeName=”y” attributeType=”XML” to=”-27200”

begin=”sr01.click+0.2s” fill=”freeze”/>

/* ... additional keyframe definitions go here

... */

37 Filmstrips

Support for real video in email has been non-existent or

spotty over the years, so there’s a long tradition of fake video

workarounds. Starting with video Gifs in 2008, JPEG push,

cinemagraphs, and more recently Kristian Robinson’s faux-

video, and Alice Li’s rollover Gifs. It’s as if all email R&D

eventually leads to a video hack, and SVG is no diff erent.

We inadvertently came across this SVG / SMIL option while

building our SVG Xmas slots game, as the mechanism is pretty

much the same. Slots consisted of three animated fi lmstrips,

with a mask showing the visible area. A PHP script then gener-

ated random off sets which moved each of the strips vertically

by a set amount, giving you a unique spin every time. Look-

ing at those long strips of slots it was easy to imagine replacing

them with strips of video. We knew from our SVG slider exper-

iment that you could incorporate raster images into an SVG

layout, so we more or less just switched the vector assets out

and adjusted the animation.

Just like slots the interaction and animation is driven by

SMIL, and we’re using inline SVG with an external image ref-

erence. The fi lmstrip is a jpeg and embedded into the SVG.

While working on jpeg push, we converted some video clips

into individual frames. As they were handy we used those same

images to create one vertical fi lmstrip in PS; you could auto-

mate this step if you were to use it often enough. While playing

with some long clips, we hit a 30,000px height limit on jpeg

fi les so we added the option of multiple strips just to be safe.

There’s one SMIL keyframe for each frame of video, so

hand-coding is slow going and prone to error. If you want to

make adjustments to say the frame rate, you need to update

the whole thing manually. After doing a couple by hand

Graeme gave up and wrote a PHP script that generates the

SVG code for the keyframes. Using a form you plug in the

resolution, number of strips, frame rate, whether to read

fi lmstrips from the top or bottom — can also run your video

backwards — and it spits out the SVG code.

38Filmstrips

The SMIL keyframes make up the

bulk of the code, so automating it

saves you a lot of work. A 3.5 sec. ani-

mation contains ~ 53 frames at 15 fps.

So the number of keyframes can get

big, really quick. File-size-wise you’ll

want to juggle resolution, length of

clip, image compression, frame rate,

etc. jpegs are more effi cient than Gifs

and better quality, but you can use

whatever image format you like, or

stick with vector artwork.

39 Filmstrips

44Flipbooks

I think it was around fi ve years ago that I saw

Playground Inc’s vector animations and won-

dered if we could do something similar in email.

Graeme used to work with Flash artists years

ago as a games programmer, and had seen some

really slick vector animations. Illustration is

always a trend in email design and SVGs have

many benefi ts over raster images. But it’s a lot of

eff ort — plus fallbacks — so I get why we don’t

see more SVG animations like this. Interest-

ingly Playground were using a “timer” powered

by Raphaël so that each SVG frame gets drawn

at a certain time. A JavaScript solution, so not

something we could use in email, but a similar

premise to the SMIL fl ipbook.

41 Filmstrips

/* final keyframe */

<set attributeName=”y” attributeType=”XML” to=”0”

begin=”sr01.click+3.5333333333333s” fill=”freeze”/>

</use>

</g>

</g>

/* play button (circle and triangle) */

<g id=”control”>

<polygon points=”730,246 760,266 730,286” fill=”#d0d0d0”

stroke=”none” style=”fill-opacity:0.75;”>

<set attributeName=”points” attributeType=”XML”

to=”730,2046 760,2066 730,2086” begin=”sr01.click”

fill=”freeze”/>

<set attributeName=”points” attributeType=”XML” to=”730,246

760,266 730,286” begin=”sr01.click+4.1s” fill=”freeze”/>

</polygon> /* end of polygon that draws a triangle */

/* click circle with id ‘sr01’ that triggers an event which

is then used to animate the image (click + a time = trigger

for each keyframe) */

<circle id=”sr01” cx=”740” cy=”266” r=”40” stroke=”#d0d0d0”

stroke-width=”6” style=”fill:#d0d0d0;fill-opaci-

ty:0.0;stroke-opacity:0.75;cursor:pointer”>

<set attributeName=”cy” attributeType=”XML” to=”2066”

begin=”click” fill=”freeze”/>

<set attributeName=”cy” attributeType=”XML” to=”266”

begin=”click+4.1s” fill=”freeze”/>

</circle>

</g>

</svg>

423 of 14 SVG models from our flipbook 43 Flipbooks

We originally went with a fi lmstrip as that’s how

slots was confi gured, but you could use indi-

vidual frames instead like a fl ipbook. Jonathan

Ingram shared a SVG / SMIL fl ipbook back in

2012 (bifter.co.uk/issue/17). In 2014 we shared a

few SVG / SMIL fl ipbooks as part of a 3D to SVG

tool write up. The fl ipbooks were created by

exporting a series of SVG vector assets that made

up a run cycle e.g. 14 frames in diff erent posi-

tions. We then turned each SVG model on and

off , setting the timing for each keyframe. Our

models were a bit too big, but with more perfor-

mant artwork you’d have no problem.

48Flipbooks

‘Video’ fl ipbook

If you take this basic fl ipbook technique you can rework it

using raster images. We took the code from one of the fl ipbook

examples and swapped out the SVG polygon models for jpeg

images, keeping the rest of the code the same.

/* replace SVG polygon model data with an image url */

<g>

<animate

id=”frame1”

attributeName=”display”

values=”inline;none;none;none;none;none;none;none;none;none

;none;none;none;none;none;none;none;none;none;none”

/* values between 0-1 as proportion of animation duration */

key Times=”0;0.052;0.105;0.157;0.21;0.263;0.315;0.368;0.42

1;0.473;0.526;0.578;0.631;0.684;0.736;0.789;0.842;0.894;0.

94;1”

dur=”1.333s”

begin=”0s”

repeatCount=”indefinite” />

<image x=”0” y=”0” width=”480” height=”204” xlink:href=”av/

av1197.jpg”/>

</g>

You end up with a 1.3 sec video sequence, containing 20

frames at ~15 fps. Single frames are less complicated as there’s

no need to calculate fi lmstrip off sets, just the keyframe timing.

It really only needs three per frame for off /on/off , it’s just

easier to keep track of this way. For longer sequences you’d

want to optimize it, and possibly write a script to generate the

keyTimes. As it’s a sequence of individual frames, you don’t

need to piece together a fi lmstrip, though that’s something else

you could automate. I’d also add a slight delay at the start to

give it time to buff er a few frames.

45 Flipbooks

Vector animations by Playground Inc

from a sequence of 72 frames

46Flipbooks

/* Example code for SMIL flipbook using SVG artwork */

<svg version=”1.1” id=”svglayer” xmlns=”http://www

w3.org/2000/svg” xmlns:xlink=”http://www.w3.org/1999/xlink”

viewBox=”0 0 800 600” x=”0px” y=”0px” width=”800px”

height=”600px” xml:space=”preserve”/* define SVG parame-

ters */>

/* define SVG group for frame one, model pose one */

<g stroke-width=”1” stroke-miterlimit=”1”>

<animate

id=”frame1”

attributeName=”display”

/* 14 values corresponding to the 14 SVG polygon models in

the run cycle. inline = visible and none = not visible */

values=”inline;none;none;none;none;none;none;none;none;none

;none;none;none;none”

/* 14 keyframes for the 14 SVG models, values between 0-1 as

proportion of animation duration */

key Times=”0;0.076;0.152;0.228;0.304;0.38;0.456;0.532;0.608

;0. 684;0.76;0.836;0.912;1”

dur=”1s”

begin=”0s”

repeatCount=”indefinite” />

/* Polygon model data for first of the 14 poses */

<polygon fill=”#39210b” stroke=”#39210b”

points=”454.3,386.5 440.7,387.2 434.8,388.9” />

/* ... additional polygon data goes here

... */

<polygon fill=”#474318” stroke=”#474318”

points=”407.0,224.9 408.9,212.8 394.7,224.0” />

</g> /* end of polygon data for first model pose */

47 Flipbooks

/* repeat for the second model pose (frame 2) */

<g fill=”#000000” stroke=”#000000” stroke-width=”1”

stroke-miterlimit=”1” opacity=”0.4” filter=”url(#s-blur)”>

<animate

id=”frame2s”

attributeName=”display”

/* note how ‘inline’ is now second in the list as model two

is now visible and model one is ‘none’ or not visible */

values=”none;inline;none;none;none;none;none;none;none;none

;none;none;none;none”

/* Same 14 keyframe timings as easy to keep track of */

key Times=”0;0.076;0.152;0.228;0.304;0.38;0.456;0.532;0.608

;0.684;0.76;0.836;0.912;1”

dur=”1s”

begin=”0s”

repeatCount=”indefinite” />

/* Polygon model data for second of the 14 poses */

<polygon fill=”#1e1306” stroke=”#1e1306”

points=”461.1,434.5 438.1,416.6 445.3,436.7” />

/* ... additional polygon data goes here

... */

<polygon fill=”#474218” stroke=”#474218”

points=”394.3,230.0 394.2,217.3 379.8,227.7” />

</g> /* end of polygon data for second frame pose */

/* repeat for the remaining 12 frames or poses, adjusting

‘none’ and ‘inline’ values to turn them on and off */

<polygon fill=”#31261f” stroke=”#31261f”

points=”388.9,200.3 388.3,198.3 378.4,191.5” />

</g></svg> /* end of last model (frame 14) close SVG */

52Shape morphing

I wanted to take another look
at SVG shape morphing

49 Flipbooks

Frame #8 keyTime 0.368Frame #7 keyTime 0.315

Frame #5 keyTime 0.21 Frame #6 keyTime 0.263

Frame #4 keyTime 0.157Frame #3 keyTime 0.105

Frame #2 keyTime 0.052Frame #1 keyTime 0

Eight jpeg frames — from a series of 20 — each

is turned on & off at diff erent keyTimes that fall

between 0 –1 to create a fl ipbook.

50Flipbooks

The downside of the fl ipbook technique is you’d end up

with more code and HTTP requests. As instead of bringing

in one big image, you’d need to request multiple and they’d

all be listed in the code. If using raster images it would be

inline — which would count towards Gmails ~100 K limit — but

you can externally reference the frames if using SVGs. It’s not

so bad for a 14 frame sequence, but with a 10 sec video clip the

frame count would start to climb.

 Adding controls to a fl ipbook also comes with diff erent

considerations. With a fi lmstrip a click triggers an event, and

the event drives the animation. Whereas a fl ipbook contains

a series of keyTimes which drives the animation. You could

use ‘ begin ’ to control a fl ipbook animation via a click event,

but it’s not something we’ve looked into thoroughly. For now

our fl ipbooks loop indefi nitely. Another consideration, is with

SMIL it’s one button per event so it only plays once. If you

want to press play multiple times without refreshing the page,

you need to layer up the buttons. For example SVG slots has

fi ve identical buttons, one for each spin. Most of our demos

have the one button, but if you were to use this in production

I’d add a couple more just to be safe.

We haven’t dug into all the nuances of animating sequences

of images with SMIL, this was just a two-for-one back when

we were building slots. There’s bound to be other ways to go

about this, as fl ipbooks and fi lmstrips are both old techniques.

Depending on what you’re trying to do, it might be worth

comparing the two if you want to explore further.

Creative layouts

One interesting aspect to all this, is the creative possibilities

that being part of an SVG brings. You can incorporate your

‘video’ into elaborate layouts. As SVG has many useful features

like clip paths, fi lters, overlapping live text, responsive design,

interaction and spline animation.

51 Flipbooks

It’s strange to consider SVG has been around since 2000-

ish, we could have been using this in place of those tiny

Gifs a decade ago. Though I’m not sure what SVG support

would’ve looked like back then. Today inline SVG has ~ 43%

support, based on the top ten email clients from emailclient-

marketshare.com for June 2019. This includes iOS, Mac Mail,

Outlook for Mac, Native Android and Samsung Mail. Though

everyone’s support numbers will diff er. IE doesn’t support

SMIL animation, so only the fi rst frame would show. You could

serve up an animated video Gif fallback in IE and elsewhere,

if you really wanted to get into it. If you’re working with SVG

and looking for a native “animated images” solution for either

vector or raster artwork, you may fi nd this useful.

56Shape morphing

square circleMorphing

53 Shape morphing

I wanted to revisit SVG shape mor-

phing to see where we stand with

support. Shape morphing is typi-

cally more lightweight than fi lmstrips

or fl ipbooks. As you have a chunk

of code that draws say a circle, and

another chunk of code that reposi-

tions the circle’s points into a trian-

gle. It then interpolates between the

two shapes, which means it generates

the inbetween states for you. Whereas

a fl ipbook or fi lmstrip needs all the

extra data for the inbetween frames.

Five years ago we were trying to

create character animations by mor-

phing between a series of polygon

meshes. We chose to work with poly-

gons as Graeme had written a tool

which converted 3D polygons into

SVG polygons. Polygons have straight

edges, in our case made up of 3-sided

triangles or 4-sided-quads. They’re

constructed out of interconnect-

ing points — like join the dots — each

defi ned by their x / y coordinates

within the SVG viewport. The more

point positions you need to store, the

more code it generates increasing the

fi le-size. With enough polygons you

could mimic curves, but the mesh

would likely be dense. So even though

I like that low-poly aesthetic, it’s not

going to be suitable for all projects.

If you want to morph between

organic, curved edged vector shapes

it’s best to use splines instead of poly-

gons. Spline data is slightly diff erent

in that you store the point coordinates,

along with their control points. If

you’ve used the pen tool in PS, it’s

those handles you can drag to change

the fl ex of the spline between points.

Besides drawing organic shapes, you

can also place text along a spline, ani-

mate an object along it, or use it as

a mask or clipPath. So for my test-

ing this time around, I decided to shift

from polygons to splines.

Shape morphing works by essen-

tially shifting a bunch of points

around, and telling it where you want

to reposition them. Like bait balls,

those same points reform into dif-

ferent shapes. You start out with a

base shape. As each shape has to

have the same number of points in

the same order — at least when work-

ing with SMIL — you want it to be the

most complicated. In our demo the

star requires the most points to draw

compared with a circle or square, so

it’s the base. You can then manip-

ulate your base shape to form new

target shapes in a vector editor, pos-

sibly by tracing over some drawn key-

frames. You don’t need a target shape

for every frame, as shape morphing

smoothly tweens between keyframes.

In order to get the point data you

can export the diff erent model posi-

tions or ‘ keyframes’ from e.g . Illustra-

tor as individual SVG s, view source

and then copy and paste the control

point data into your HTML. When you

fi rst defi ne the base shape in the code

it can be any one of your keyframe

54Shape morphing

Polygon with three points and straight edges (left),
spline with additional control points which allows

you to create curved edges (right)

55 Shape morphing

shapes, as they’re all made up of the

same number of points by then. You

are just saying here’s the chunk of

data we’ll be shifting around.

You then defi ne the animation, by

setting a duration and telling it how

you want to position all that base

point data on frame one. Again your

fi rst keyframe can be any one of your

shapes, you’re just saying on the fi rst

frame place that group of points like

so. You then set a target shape or

series of target shapes for it to morph

between. If you go from a square to a

circle like on p 57, it will just pop from

a square to a circle. You’ll need to add

a third keyframe — a new set of data

points — for it to loop from a square

to a circle, then back to a square again.

I just wanted a pared-down example

as it’s easier to follow.

There are a number of ways to add

an SVG to an HTML email, and each

has varying levels of support. In order

to test shape morphing — eff ectively

a test of SMIL support — I stuck with

inline SVG and SVG image. Image has

the broadest support of all the embed-

ding techniques at ~ 62 %, based on

emailclientmarketshare.com for June

2019. It includes iOS, Apple Mail, Out-

look for Mac, Native Android, Sam-

sung, Android Outlook, Gmail App

IMAP, Windows 10 Mail, Yahoo Mail! ,

Outlook.com, Offi ce 365, AOL Mail

and Thunderbird. SVG images sup-

port SMIL animation, so shape mor-

phing will also run in those clients.

That’s not bad coverage, and you

could fallback to a raster image else-

where. Shape morphing when placed

inline has less support at ~43%. It

includes iOS, Apple Mail, Outlook on

Mac, Thunderbird and Samsung Mail.

Browser support is solid except for IE

which doesn’t support SMIL. IE dis-

plays a static SVG — like Gifs in Out-

look — which for many illustrations or

backgrounds would be fi ne. Or you

could use UA targeting to serve up

diff erent content. In 2015 SMIL was

briefl y deprecated in Chrome 45 and

then reinstated, I guess it’s in a hold-

ing pattern for now.

Support isn’t the only consideration

though, as diff erent techniques have

varying capabilities. SVG image sup-

ports SMIL animation but not inter-

action, whereas inline SVG supports

both. You can manipulate the parts

of an inline SVG using CSS, you can’t

with an SVG image. Images are exter-

nal, so everything we’ve come to know

about dynamic images in email also

applies here. Inline SVG s aren’t as

suited to dynamic content as you’re

limited to what gets sent out in the

HTML. It’s these types of project

requirements that usually determine

how you’ll embed the SVG.

Basic SVG image support is inch-

ing up in email clients, and SMIL ani-

mation is built in as a native solution.

This means shape morphing is more

viable than fi ve years ago, as long as

SMIL browser support stays current.

Animate an object along any shaped spline

Moon path follow

57 Shape morphing

<svg xmlns=”http://www.w3.org/2000/svg” /* define SVG parameters */>

/* base shape data (square but could be circle) */

<path fill=”none” stroke=”#114460” stroke-width=”2” d=”M398.01,80.04

4c1.282,0.015,2.128,1.142,2.143,2.424 c0.071,7.839,0.525,303.622,0.2

87,313.027c-0.076,2.911,0.388,3.277-2.411,3.284c-8.695,0.02-306.306-

0.824-314.243-0.888c-3.621-0.028-3.549-0.087-3.602-3.555c-0.089-

5.803,0.279-303.958,0.573-311.282c0.071-1.779,1.341-3.3,2.728-3.314

C92.983,79.645,389.112,79.938,398.01,80.044z”> /* end point data */

<animate attributeName=”d” /* animation parameters */

dur=”2s” /* animation duration */

repeatCount=”indefinite”

/* keyframes follow */

values=”M398.01,80.044c1.282,0.015,2.128,1.142,2.143,2.424 c0.

71,7.839,0.525,303.622,0.287,313.027c-0.076,2.911,0.388,3.277-

2.411,3.284c-8.695,0.02-306.306-0.824-314.243-0.888 c-3.621-

0.028-3.549-0.087-3.602-3.555c-0.089-5.803,0.279-303.958,0.573-

311.282c0.071-1.779,1.341-3.3,2.728-3.314 C92.983,79.645,389.112,7

.938,398.01,80.044z; /* data for starting shape (square) */

M354.385,111.599c23.167,21.333,59.115,72.234,57.382,124.901

c2.066,71-29.927,107.005-41.875,123.214c-21.597,21.106

59.392,62.413-136.483,62.413c-71.241,0-109.702-39.962-121.952-49.212

c-20.083-21.417-52.289-53.081-56.45 125.081c1.495-76.667,29.877-

107.214,56.277-135.263 c19.935-18.074,55.885-45.071,122.104-47.269C2

96.833,65.303,337.885,97.933,354.385,111.599z” /* data for target

shape (circle) */

/* end of keyframe data */

fill=”freeze”

calcMode=”spline”

keySplines=”0.4 0.8 0.5 1” /* easing & faring on one morph */

keyTimes=”0; 1”/> /* two keyframes as proportion of duration */

</path>

</svg>

Mask (above) reveals & obscures circle underneath

Moon path morph

59 Shape morphing

/* Moon phase animation using one spline as a mask (left) to reveal

 the moon, can also do this with two splines see demos */

<svg xmlns=”http://www.w3.org/2000/svg” /* define SVG parameters */>

<circle cx=”200” cy=”200” r=”188” /* circle revealed behind mask */

stroke=”#606060” fill=”#606060”/> /* give circle a color */

/* define the spline (path) */

<path d=”M200,10 C200,10,400,10,400,200 S200,390, 200,390

S400,390,400,200 C400,10,200,10,200,10z” stroke=”#202020”

fill-rule=”nonzero” fill=”#202020”> /* color it */

<animate attributeName=”d”

dur=”10s” /* animation duration */

repeatCount=”indefinite”

/* Three keyframes (Mxxx the start of each) */

values=”M200,10 C200,10,400,10,400,200 S200,390, 200,390

S400,390,400,200 C400,10,200,10,200,10z;

M200,10C200,10,400,10,400,200 S200,390,200,390 S0,390,0,200

C0,10,200,10,200,10z;

M200,10 C200,10,0,10,0,200S200,390,200,390 S0,390,0,200C0,10,200,10

,200,10z;

fill=”freeze”

calcMode=”spline”

keySplines=”1 1 1 1;1 1 1 1”/>

</path>

</svg>

anna@ stylecampaign.com 61 Shape morphing

/* Takes moon phases and animates it along a path */

<svg width=”360” height=”360” viewBox=”0 0 400 400” xmlns=”http://

www.w3.org/2000/svg” /* define SVG parameters */>

/* define path named moonPath */

<path d=”M240 130 C386,130 386,350 240,350 S 94,130 240,130 Z”

stroke=”none” fill=”transparent” id=”moonPath”/>

<g id=”moon”>

<circle cx=”-40” cy=”-40” r=”84” fill=”#606060”/> /* moon */

<g transform=”translate(-130,-130) scale(0.45)”>

<path d=”M200,0c0,0,200,0,200,200S200,400,200,400 s200,0,200-

200 C400,0,200,0,200,0z” stroke=”#202020” fill-rule=”nonzero”

fill=”#202020”>

<animate attributeName=”d”

dur=”10s”

repeatCount=”indefinite”

values=”M200,10 C200,10,400,10,400,200 S200,390, 200,390

S400,390,400,200 C400,10,200,10,200,10z; M200,10

C200,10,400,10,400,200 S200,390, 200,390 S0,390,0,200

C0,10,200,10,200,10z; M200,10 C200,10,0,10,0,200 S200,390,200,390

S0,390,0,200C0,10,200,10,200,10z;” /* moon spline animation */

fill=”freeze”

calcMode=”spline”

keySplines=”1 1 1 1;1 1 1 1”/>

</path>

</g>

<animateMotion begin=”0.0s” dur=”12.s” repeatCount=”indefinite”>

<mpath xlink:href=”#moonPath”/> /* sends moon around moonPath */

</animateMotion>

</g>

</svg>

62Grid

Emailzine issue # 01

Whenever I read a magazine I’m

always curious about their grid, espe-

cially if it’s about design or type. So

for what it’s worth here’s mine. I’m

using the typeface Plantin MT Pro for

body copy and titles, and Roboto Mono

for the code samples and folio. My

primary body copy is 9.9 / 13.5 points,

giving me my base unit of 13.5 pt.

My grid modules are 2×2 units or

27×27 pt each, with one unit inbe-

tween. Excluding the margins, my

grid is 8×12 modules (right).The full-

width is 310.5 pt, though I’m only

using seven modules 270 pt / 22 p6 for

single column text.

One early question I had was

whether this small A5 format could

accommodate a two column layout.

I’d read that ~ 13 picas per column

was decent, and there’s also the 7 – 10

words per line guide. So I reduced the

two column text to 8.9 pt, and it takes

up all eight modules. Each 4-module

column is 148.5 pt / 12.37 picas. I later

came across a few A5 sized magazines

that all used two column as their main

layout, so that reassured me.

The typeface used on the cover is

WHOA by Scribble Tone, which you

can license from www.futurefonts. xyz.

You can send me any feedback:

anna @ stylecampaign.com

63 Grid

